| # | Hyperparameter | Range Value | Interval |
|---|---|---|---|
| 1 | Sliding Window Size | 40-70 | 5 |
| 2 | Number of LSTM neurons | 30-100 | 5 |
| 3 | Dropout | 0.3-0.5 | 0.01 |
| 4 | Learning Rate | 0.0001-0.01 | 0.0001 |
| 5 | Regularizer | L1, L2, L1L2 | - |
| 6 | Regularizer Rate | 0.005-0.02 | 0.001 |
| 7 | Optimizer | RMSProp, Adam, Nadam | - |
| # | ABC Parameter | Value |
|---|---|---|
| 1 | Dimension | 7 |
| 2 | Solution Number | 10 |
| 3 | Population Size | 20 |
| 4 | Limit | 7 |
| 5 | Maximum Cycle Nuber | 10 |

| # | Best Hyperparameter | Value |
|---|---|---|
| 1 | Sliding Window Size | 60 |
| 2 | Number of LSTM neurons | 65 |
| 3 | Dropout | 0.31 |
| 4 | Learning Rate | 0.0091 |
| 5 | Regularizer | L2 |
| 6 | Regularizer Rate | 0.014 |
| 7 | Optimizer | RMSProp |
| # | ABC-LSTM Measure | Value |
|---|---|---|
| 1 | Mean | 206.8833373 |
| 2 | Standard Deviation | 13.31792151 |
| 3 | Best | 183.3421175 |
| 4 | Worst | 240.8371386/td> |


This research proved that ABC can be used as a method for optimizing hyperparameter for models that use LSTM for bitcoin price prediction. Optimized hyperparameter in this research consisted of sliding window size, number of LSTM units, dropout rate, regularizer , regularizer rate, optimizer and learning rate. Prediction result of ABC-LSTM outperformed LSTM prediction result.